
Maximum-area inscribed triangle and minimum-area

enclosing triangle of a convex polygon.

Dirksen Maxime, Dupuis Emma, Renard Simon

1 Introduction

The largest triangle in a polygon problem consists in finding the maximum-area triangle that can
be contained in a given convex polygon in the plane. In order to solve this problem, we have used
the article written by Keikha, Löffer, Urhausen and van der Hoog [1]. The minimum-area enclosing
triangle problem requires finding the smallest triangle that contains a given convex polygon. Pârvu,
Ovidiu and Gilbert, David [2] present an algorithm to compute such a triangle.

To illustrate these problems and their corresponding algorithms, we made an interactive website
to create geometric artworks. The user draws some points, then the convex hull is computed, thus
we obtain a convex polygon. The biggest inscribed triangle in this polygon is computed to be
colored. When this triangle is colored, we can get at most 3 convex polygons on which we apply
the same steps on which we apply the same steps until we only get colored triangles. In addition,
the smallest triangle that contains the original polygon is plotted. An example of the result is
shown in Figure 1.

Figure 1: Artwork example

2 Maximum-area triangle in a convex polygon

2.1 Problem and main notions definitions

Let P be a convex polygon with n vertices. A triangle T is P-aligned if the vertices of T are
a subset of P. All polygons have at least one P-aligned triangle because a polygon has at least 3
vertices. Let a ∈ P be a root of T , every P-aligned triangle which contains this vertex a is said
to be rooted on a. Two P-aligned triangles T1 and T2 are interleaving if between each vertex of
T1, we can find a vertex of T2 by x-coordinate and not radially (if they share a vertex, it does not
break the interleaving) [3].

1

In order to find the largest triangle T = △abc inscribed in P, where a, b, c are three (different)
points of P , we need to find a 3-stable triangle. A triangle is 3-stable, if by moving only one vertex,
we never get a bigger triangle. Thus max (△abc,△a′bc,△ab′c,△abc′) = △abc. Every 3-stable
triangle is also 2-stable which mean that if we fix a root a of the triangle △abc, then there are no
bigger triangle △ab′c or △abc′. We can say that b and c are stable [4].
By definition, the largest triangle inscribed in a convex polygon is 3-stable, thus also 2-stable.

2.2 Dobkin and Snyder’s algorithm

Dobkin and Snyder gave an algorithm to find the maximum-area triangle inscribed in a convex
polygon in O(n) [4]. The algorithm 1 resumed Dobkin and Snyder’s solution.

Algorithm 1: O(n) Dobkin and Snyder’s algorithm

Input : P : convex polygon,r: a vertex of P
Output : T : a triangle
Legend : Operation next means the next vertex in clockwise order of P
a← r
b← next(a)
c← next(a)
m←△abc
while True do

while True do
if △abnext(c) ≥ △abc then

c← next(c)
end
else if △anext(b)c ≥ △abc then

b← next(b)
end
else

break
end

end
if △abc ≥ m then

m←△abc
end
a← next(a) if a = r then

return m
end
if b = a then

b← next(a)
end
if c = b then

c← next(b)
end

end

The algorithm correctness assumes the correctness of several statements.

Statement 1. If △abc > △abnext(c) and △abc > △anext(b)c, then △abc is 2-stable.

Statement 2. For a given root a, there exists only one 2-stable triangle △abc.

Proof 1 (proof of Statement 1). Initially, we have T = △abc with b = next(a), c = next(b).
If T s’ area increases when we move the vertex c forward, the distance between the segment ab and
the vertex c increases. After a few steps, we will get c = c∗ such that c∗ is the vertex that maximizes
the height. As we are in a convex polygon, we know that △abc∗ > △abnext(c∗).
After finding c∗, we can apply the same reasoning to find b∗. By applying these steps several times,
we get a triangle T = △abc such that b = next(a), c = next(b). By construction, this triangle
rooted on a is 2-stable.

2

A

B

C D E
F

G

H
I

Figure 2: Counter example of Dobkin and Snyder’s algorithm

We can demonstrate that the Statement 1 is true, but unfortunately Statement 2 is false. To
prove this, we give in Section 2.2.1 a convex polygon such that, for a rooted vertex a, there exists
two 2-stable triangles. More generally, the number of 2-stable triangles with a fixed root is bounded
by O(n) [1].

2.2.1 Counter example

Vahideh Keikha et al.[1] found a convex polygon such that the Algorithm 1 doesn’t return
the biggest inscribed triangle. The polygon is shown in Figure 2. Its vertices coordinates are:
A = (1000, 1000), B = (759, 2927), C = (2506, 4423), D = (3040, 4460), E = (4745, 4322), F =
(4752, 4262), G = (5000, 1000), H = (3383, 413), I = (1213, 691).

With this polygon, Algorithm 1 found that the △CGI is the biggest. In reality, the biggest one
is the triangle △ADG. As it’s the biggest, △ADG is 3-stable and so it’s 2-stable whatever the
root is.

Even if △ADG is 2-stable, Algorithm 1 will never find it. This mistake appears because for each
vertex v of the real biggest triangle, there are two 2-stable triangles rooted on v and Algorithm 1
finds a smaller one than △ADG. These 2-stable triangles rooted on the same vertices as △ADG
are:

• When the root is A, △ABE (yellow)

• When the root is D, △DFH (blue)

• When the root is G, △GIC (red)

So, Algorithm 1 defined by Dobkin and Snyder is incorrect. In the next section will study
another algorithm that is correct.

2.2.2 Biggest 4-gon

Dobkin and Snyder also defined an algorithm to find the biggest 4-gon in a convex polygon that
runs in O(n). This second algorithm is very similar to Algorithm 1. It consists of starting from
an arbitrary root a, then defining b, c, d as the three next vertices after a. After that, we have to
move forward d as long as the area of abcd increases. Then, we do the same by moving c forward
and then the same for b. We repeat these steps as long as at least one vertex is moved.

When neither b, c nor d can move forward, we move a forward and remember the current biggest
4-gon encountered. This is done until a steps on each vertex of P . As a is moved n times and b, c
and d move at most 2n times, this algorithm runs in O(n).

Unfortunately, like the Algorithm 1, this algorithm is not correct. A counter example has been
found by Vahideh Keikha et al.[1] that is built similarly as it’s done in 2.2.1.

3

2.3 O(n2) algorithm

The idea is to find for each vertex pi ∈ P all 2-stable triangles by moving the two other points,
where pi is the root. Moreover, we must find the largest 3-stable triangle among these 2-stable
triangles, recall that the largest triangle is 3-stable and all 3-stable triangles are 2-stable. In
contrast to the Dobkin and Snyder’s algorithm, each time the root is moved, the two other points
are reset [1].

The Algorithm 2 shows the pseudocode of the program presented in [1]. An error has been
made in the second ”while”. Instead of having the condition while c ̸= a do, it should be
while next(c) ̸= a do. Algorithm 2 contains the correction. Indeed, if the condition is c = a in
the most nested loop, c will never move as the area of △abnext(c) will at some point take the
value of △aba for which the area is equal to 0. Thus, the condition △aba ≥ △abc cannot be true
for any value of b, thus the code will loop infinitely.

Algorithm 2: O(n2) algorithm

Input : P = p0, p1, ..., pn: convex polygon
Output : T = pa, pb, pc: largest P-aligned triangle
Legend : Operation next means the next vertex in clockwise order of P
a← p0
b← next(a)
c← next(b)
m←△abc
while True do

while next(c) ̸= a do
while △abnext(c) ≥ △abc do

c← next(c)
end
if △abc ≥ m then

m←△abc
end
b← next(b)

end
a← next(a)
if a = p0 then

return m
end
b← next(a)
c← next(b)

end

We can analyze the Algorithm 2 by breaking down the three while loops :

• while △abnext(c) ≥ △abc do: tries to move c forward as much as possible to increase the
area.

• while next(c) ̸= a do: we are sure that all 2-stable triangles have been found for the root
a as we cannot move c in order to find a larger triangle. After each c augmenting loop, b
moves to try to move c further successfully. — These two loops have a total complexity of
O(n) because we can shift c of at most n− 1 positions and b can’t be moved more than c.

• while True do: set iteratively each vertex as the root of a 2-stable △abc triangle, where a
is the root. — O(n), total : O(n2)

In this way, all 2-stable triangles are found due to the fact that all 3-stable triangle are 2-stable.
We can therefore find the largest triangle contained in a convex polygon [1].

2.4 Largest triangulation

Our aim is to perform the largest triangulation, we just need to recursively run the Algorithm 2
on each new polygon created by removing the largest triangle found in the actual polygon. There

4

are at most 3 recursions, the figure 3 takes up the 4 possible cases after the algorithm has found
the largest triangle. If the new created polygons are triangles, there is no need to execute the
largest triangle algorithm on them.

Let n be the number of vertices of a convex polygon P . The largest triangle, divide the boundary
of P into 3 intervals of vertices. Note that an interval is never empty, it at least contains two
triangle’s vertices. And an interval can at most contains n− 1 vertices. So, we recursively call the
algorithm on the sub-polygons formed by the intervals. Note that it’s pointless to do this if the
interval is less than or equal to 3, i.e. when the triangle is immediately find or when there is no
sub-polygon created (the size of the interval is equal to 2 when the boundary of the triangle is the
boundary of the polygon).

The procedure can be expressed by the following equation, let a, b, c be the vertices of the largest
triangle and n the total number of vertices of the current polygon:

T (n) = O(n2) + T (α) + T (β) + T (γ)

where α ∈ {# vertices in the interval [a, b]}, β ∈ {# vertices in the interval [b, c]},
γ ∈ {# vertices in the interval [c, a]}. The recursion stop when n = 3 or n = 2, then T (3) = 1 and
T (2) = 1. Note that α+ β + γ = n+ 3.

Hence, the total running time of our custom triangulation is bounded by O(n2 log n).

(a) 0 new polygon
created

(b) 1 new polygon
created

(c) 2 new polygons
created

(d) 3 new polygons
created

Figure 3: The 4 cases of polygons created by removing the largest triangle. In blue the largest
triangle to remove from the polygon, in white the polygons that will be created (not necessarily

triangles).

2.5 O(n log n) algorithm

The general idea of the Divide-and-Conquer algorithm of [1] is to reduce the polygon to the
largest triangle. It rests on the two following lemmas :

Lemma 1. ([3], Lemma 2.2) A globally largest-area k-gon and a larest-area rooted k-gon interleave.

Lemma 2. ([1], Lemma 9) The largest-area root triangle can be found in linear time.

The proof of this second lemma have been explained in the subsection 2.3.

Let a be an arbitrary vertex of P and let Ta be the largest triangle rooted at a. As we saw in
the figure 3, the largest triangle decomposes the boundary of a polygon in many intervals. Let m
be the median vertex of the interval with the most vertex, and Tm be the largest triangle rooted
at m. By the Lemma 1, the largest triangle that we are looking for interleaves with Ta and Tm.

This means that the 3 points of the largest triangle are in 3 of these intervals (3 distinct).
Because 3 intervals (figure 3) are created by Ta (an interval contains at least two of the triangle’s
vertices), there are exactly 6 intervals create by Ta and Tm (note: if Ta and Tm overlaps on some
vertex, this creates an interval with only this point).

Case 1 : Ta and Tm interleave, since the largest triangle vertices are in 3 intervals, if we remove
the 3 unused interval, there is only 2 different possible set of intervals that can be chosen in order
to form a new polygon which contains Ta, Tm and the largest triangle which all interleaves. Let
P ′ and P ′′ be these two polygons. The figure 4 a) show this case.

5

Figure 4: ([1], Figure 9) Dividing triangles and the resulting subproblems.

Case 2 : Ta and Tm don’t interleave, there are therefore just one configuration where the largest
triangle interleave with the two others, as shown in Figure 3 b).

If we are in case 1, the algorithm will be recursively executed on P ′ and P ′′. And only on the
single polygon created in the case 2. We repeat the procedure until there is only 3 vertices in the
polygon, which mean that the largest triangle have been found for the previous sub-polygon and
if the calls are traced back, it is only when the recursion have been applied on P ′ and P ′′ (case 1)
that we have to only keep the largest triangle, because we found two largest triangles but for two
different sub-polygon. So at the end of the calls back, we obtain the largest triangle for the initial
polygon.

Algorithm 3: Divide-and-Conquer O(n log n) algorithm

Procedure: Largest-Triangle(P)
Input : P = p0, p1, ..., pn: convex polygon
Output : T = pa, pb, pc: largest P-aligned triangle
if |P | = 3 then

return P
end
a← arbitrary vertex of P
Ta ← largest-area triangle rooted at a
m← median point on the largest interval on P between two vertices of Ta

Tm ← largest-area triangle rooted at m
P ′, P ′′ ← sub-polygons constructed by interleaving intervals using Ta and Tm

if Ta and Tm are interleaving then
return max(Largest-Triangle(P ′), Largest-Triangle(P ′′))

end
else if P ′ can include the largest-area triangle then

return Largest-Triangle(P ′)
end
else

return Largest-Triangle(P ′′)
end

This algorithm performs the largest triangle finding problem in O(n log n).

Lemma 3. ([1], Lemma 10) Let P be a convex polygon with n vertices. The (one or two) sub-
problems induced by P have size at most 5

6 (n+ 6).

Without redoing the proof of the lemma 3 [1], the idea is that Ta and Tm decompose P into
6 intervals. Hence, the two possible sub-polygon P ′ P ′′ have therefore a size between 1

6 and 5
6

times the number of vertices of the actual polygon. Furthermore, if we are in the case 1, the total
number of vertices be equals to |P ′|+ |P ′′| = |P |+ 6 (see the figure 4 to be convinced).

6

We now have all what we need to compute the Divide-and-Conquer equation :

T (n) = max{T (α(n+ 6)) + T ((1− α)(n+ 6)) +O(n+ 6), T (α(n+ 6) +O(n+ 6))}

Where α is the size of the created sub-polygon : by the lemma 3 we know that 1
6 <= α <= 5

6 .
The recursion stop when |P | = 3 then we have T (3) = 1. By using mathematical artifice of Akra
and Bazzi [5], the equation can be rewritten as

T (m) = T (αm) + T ((1− α)m) +m

m is in O(n) which leads to an upper bound O(n log n) for T (n). [1]

3 Minimum-area enclosing triangle of a convex polygon

3.1 Problem and main notions and definitions

Let P be a convex polygon with n vertices. A triangle T is a minimum-area enclosing triangle
if T corresponds to the smallest area triangle containing every vertex of P. This triangle T is
represented by three vertices and three sides. vertexA, vertexB, vertexC ∈ vertices of T and A,
B, C ∈ sides of T. a, b&c are the indexes used to represent the vertices used to form the triangles’
sides. vertex+ 1 means the next vertex of P in clockwise order.

A side S of T is said to be flush with an edge e of P if S ⊇ e. A side S of T is said to be tangent
to the polygon P on vertex v if v ∈ e where e is an edge of the polygon.

Let h(p) be the distance between p and side C. The right chain is the set of vertices of P where
h(p) > h(p+ 1). The left chain is the set of the remainder of vertices from P. γp is the point on A
flush to [a, a− 1] such that h(γp) = 2h(p) on the ray [a− 1, a).

Let’s assume a is a vertex of P on the left chain and ba is a vertex of P on the right chain with
h(ba) ≥ h(a). The edge [a − 1, a] is said to be low if γaba intersects P above ba (Figure 5a), high
if γa−1ba−1 intersects P below ba−1 (Figure 5b) and critical if it is neither low nor high.

Note To avoid finding ba, we can also say that if h(b) > h(a) and γab cuts P above or tangent
to b, then [a− 1, a] is low. Moreover, if h(b) > h(a) and γab cuts P below b , then [b− 1, b] is high.

C

a− 1

a ba

γa

(a) Edge [a, a− 1] is low

a− 1

a

ba−1

γa−1

C

(b) Edge [a, a− 1] is high

Figure 5: High/Low examples

3.2 Important theorems

We base our algorithms on several important theorems introduced in [2].

Theorem 1. The midpoint M of each side of a minimum-area enclosing triangle must touch the
polygon.

Theorem 2. For any P , a minimum-area enclosing triangle has at least two sides are flush and
a third side which can be either flush or tangent to P .

7

3.3 Brute force (O(n3))

One way of finding this minimum-area enclosing triangle T is by brute force, seen in Algorithm 4.
To do this, we analyze each triangle possible following theorems 1 and 2. Each one of these triangles
are found by first choosing two vertices i and j of the polygon to form the two first flush sides:
A flush to [i, i + 1] and B flush to [j, j + 1] of the polygon. We then choose the last vertex k of
the polygon to be either the midpoint of the tangent side or the flush side of the triangle to the
polygon, depending on the area of these triangles.

p1 p2

p3

p4

p5

V ertexB
V ertexA

V ertexC

B

A

C

(a) Example of triangle with tangent side

p1 p2

p3

p4

p5

V ertexB
V ertexA

V ertexC

B

A

C

(b) Example of triangle with 3 flush sides

Figure 6: 2 types of possible enclosing triangles

Algorithm 4: Brute force algorithm

Input : P = p1, p2, ..., pn: convex polygon
Output : T : the minimum enclosing triangle
Legend : Operation next means the next vertex in clockwise order of P
for 1 ≤ i, j, k ≤ n do

A← [pi, next(pi)]
B ← [pj , next(pj)]
if A ̸= B then

if k /∈ A ∧ k /∈ B then
flushTriangle← getTriangleAllF lushSides(A,B, k)
tangentTriangle← getTriangleWithTangentSide(A,B, k)
minEnclosingTriangle←
min(minEnclosingTriangle, flushTriangle, tangentTriangle)

end

end

end
return minEnclosingTriangle;

Algorithm 5: getTriangleAllFlushSides

Input : A, B, k: Flush sides A & B, vertex k of polygon
Output : T : the enclosing triangle
Legend : Operation next means the next vertex in clockwise order of P
C ← [k, next(k)]
vertexA← intersection(A,B)
vertexB ← intersection(B,C)
vertexC ← intersection(C,A)
return Triangle(vertexA, vertexB, vertexC)

Finding the tangent side

Let A and B be two flush sides with known equations. We must find the third side C of the
triangle tangent to P ’s vertex k as seen in Figure 6a. Theorem 1 indicates that k must be the
midpoint of C, as it is the only intersection between C and P . We then know that the distance
between the x coordinate of vertexA and the x coordinate of p3 is the same as the distance between
the x coordinate of vertexC and the x coordinate of p3. This is the same for the y coordinate. We
can now solve this problem with a two equations system to find the equation of vertexC where
vertexC is tangent to the polygon by its midpoint.

8

3.4 O’Rourke et al.’s algorithm (θ(n))

This algorithm [6] will use the same theorems (1 and 2) seen for the brute force algorithm.
Instead of finding all combinations of possible sides of the triangle, for each side C, the algorithm
will find the second flush side and set the third flush/tangent side, forming the minimum enclosing
triangle having this fixed flush side C.

Finding γ

We know C and h(γp) = 2h(p). To find γp, we use a line parallel and at a distance 2h(p) of C.
γp is the intersection of the line and the ray [a− 1, a).

The algorithm

The main algorithm is a loop on each vertex c of P to set the first flush side C. C is set to
[c, c−1]. We set a = 2 and b = 3. We now want to find the minimum enclosing triangle containing
this flush side C.

Finding the positions of a, b & c First, we want to position our index points a, b&c such that
these points can form the three sides of the minimum enclosing triangle. To do this, we move the
index b to the right chain. This results in advancing b of one position as long as h(b + 1) > h(b).
We then, adjust the positions of a and b such that both are either critical or high as we do not
want T to pass through P. This means that, until b is as far as a from c, we advance a if the edge
[a, a− 1] is low and advance b if the edge [b, b− 1] is high. [a− 1, a] is now high or critical. To find
the tangency of side B, we keep advancing b as long as [b− 1, b] is high and h(b) ≥ h(a− 1). Once
this is done, tangency for side B has been achieved.

Updating sides We can now define the sides A and C by computing their vertices, where A is
flush with [a, a− 1] and C is flush with [c, c− 1]. If we were not able to find a tangency of side B,
both sides A and B must be updated. However, if we were, only side B must be updated.

Updating sides A and B means that we do not find any possible triangles with a tangent B
side. Thus, we must set B as our second flush side instead of A and set A as the third flush or
tangent side. To do this, we must compute the middle point of side B. As B is set to be flush to
[b, b − 1], we can compute side B = [vertexA, vertexC] where vertexA = intersection(B,C) and
vertexC = intersection(A,B). We can determine the nature of side A to P (flush or tangent) by
looking at the distance of vertexa−1 and Bs’ midpoint to]c, c−1[as we want to find the minimum
area enclosing triangle. In other words, if h(Bs′midpoint) < h(a − 1), side A is tangent to P by
the vertexa−1 or else side A is flush to P. B and C are both flush sides to P.

Updating side B indicates that a tangency for B has been found. A and C may remain our two
flush sides. To set our final side B, we first want to find the intersection between A and B which is
vertexC . As B is tangent to P in a vertex v, we know B’s midpoint is v. Using the same method
as finding γv, vertexC is the intersection of the ray [a − 1, a) ∈ A with the line parallel and at a
distance 2h(v) of C.

Defining the local minimal enclosing triangle Finally, we must compute our found triangle’s
area. The minimal area enclosing triangle is the smallest local minimal enclosing triangle found.

Time Complexity

All we do is increment our three indexes on the polygon used to form our triangle. Thus, this
algorithm executes in θ(3n) = θ(n) steps.

9

Algorithm 6: O’Rourke et al.’s algorithm

Input : P = p1, p2, ..., pn: convex polygon
Output : T : the minimum enclosing triangle
Legend : Operation next means the next vertex in clockwise order of P
a← 1
b← 2
for c← 1, n do

//Finding the positions of a,b&c
while h(next(b)) ≥ h(b) do

b← next(b)
end
while h(b) > h(a) do

if isHigh(b) then
b← next(b)

end
else

a← next(a)
end

end
while isHigh(b) and h(b) > h(a) do

b← next(b)
end
//Updating sides
if tangencyFound(B) then

UpdateSidesAB()
end
else

UpdateSideB()
end
//Defining minimal enclosing triangle
if Area(ABC) ≤ Area(currentEnclosingTriangle) then

minEnclosingTriangle← ABC
end

end
return minEnclosingTriangle

4 Implementation

An implementation of our work is available online here https://sirenard.github.io/maxim

alTriangulationArt. On the main page, you can draw your own artwork from your polygon
and if you wish, you can visualize step by step the triangulation. You also have access to another
web page, on which you can see each steps of Algorithm 1 on a custom polygon or on the polygon
presented in Section 2.2.1 to convince you of the non correctness of this algorithm.

5 Work contribution

• Simon: subsection 2.2 and implementation of the Algorithm 1

• Maxime: subsections 2.3, 2.4, 2.5 and implementation of the Algorithm 2.

• Emma: section 3 and the implementation of the Algorithm 4

References

[1] V. Keikha, M. Löffler, J. Urhausen, and I. van der Hoog, “Maximum-area triangle
in a convex polygon, revisited,” CoRR, vol. abs/1705.11035, 2017. [Online]. Available:
http://arxiv.org/abs/1705.11035

10

https://sirenard.github.io/maximalTriangulationArt
https://sirenard.github.io/maximalTriangulationArt
http://arxiv.org/abs/1705.11035

[2] O. Pârvu and D. Gilbert, “Implementation of linear minimum area enclosing triangle algo-
rithm,” Computational and Applied Mathematics, vol. 35, no. 2, pp. 423–438, 2016.

[3] J. E. Boyce, D. P. Dobkin, R. L. S. Drysdale, and L. J. Guibas, “Finding extermal
polygons,” SIAM Journal on Computing, vol. 14, no. 1, pp. 134–147, 1985. [Online]. Available:
https://dx.doi.org/10.1137/0214011

[4] D. P. Dobkin and L. Snyder, “On a general method for maximizing and minimizing among
certain geometric problems,” 20th Annual Symposium on Foundations of Computer Science,
pp. 9–17, 1979. [Online]. Available: https://dx.doi.org/10.1109/SFCS.1979.28

[5] M. Akra and L. Bazzi, “On the solution of linear recurrence equations.” Computational
Optimization and Applications 10, vol. 10, no. 1, pp. 195—-210, 1998. [Online]. Available:
https://doi.org/10.1023/A:1018373005182

[6] J. O’Rourke, A. Aggarwal, S. Maddila, and M. Baldwin, “An optimal algorithm for finding
minimal enclosing triangles,” Journal of Algorithms, vol. 7, no. 2, pp. 258–269, 1986. [Online].
Available: https://www.sciencedirect.com/science/article/pii/0196677486900076

11

https://dx.doi.org/10.1137/0214011
https://dx.doi.org/10.1109/SFCS.1979.28
https://doi.org/10.1023/A:1018373005182
https://www.sciencedirect.com/science/article/pii/0196677486900076

	Introduction
	Maximum-area triangle in a convex polygon
	Problem and main notions definitions
	Dobkin and Snyder's algorithm
	Counter example
	Biggest 4-gon

	O(n2) algorithm
	Largest triangulation
	O(n logn) algorithm

	Minimum-area enclosing triangle of a convex polygon
	Problem and main notions and definitions
	Important theorems
	Brute force (O(n3))
	O'Rourke et al.'s algorithm ((n))

	Implementation
	Work contribution

